
A F I N I T E - D I F F E R E N C E  METHOD OF C A L C U L A T I N G  A 

T U R B U L E N T  BOUNDARY L A Y E R  OF I N C O M P R E S S I B L E  
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An implicit finite-difference method of solving the equations of a turbulent boundary layer of 
incompressible liquid in the presence or absence of injection at the wall is discussed. The 
results  of calculations by this method are compared with experimental data. 

The obtention of exact solutions of the equations of a turbulent boundary layer is a problem which has 
received little study so far .  Recent progress in this area has been due to the application of numerical 
finite-difference methods of investigation [1-4], which allow a detailed calculation of turbulent boundary 
layers  of the most diverse nature. The lack of information on the mechanism of turbulence, however, has 
led to a great variety of semiempirical hypotheses by different authors. The numerical methods of solving 
boundary-layer equations are also very diverse. 

Below we describe a numerical method of calculating a turbulent boundary layer .  This method gives 
results which are in good agreement with experimental data. 

We consider the equations of averaged motion in a plane turbulent boundary layer of incompressible 
liquid 
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where �9 i s  the total tangential friction stress 
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The system of equations (1) is solved with boundary conditions: 

for y = 0  ~u=0; v=v~,  
for y--)- oo u-->-uc, 
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Fig.  1. Calculation grid and stencils used Ln approxi- 
mation of differential equation (7) by a difference 
equation. 
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Fig .  2. Compar i son  of calculated and exper imen ta l  values:  
I) local  f r ic t ion  fac to r  (a = f lat  p la te ,  expe r imen t  3000 
[9]; b) negat ive  p r e s s u r e  gradient ,  expe r imen t  1300 [9]); 
II) local  f r ic t ion  fac to r  for  pos i t ive  p r e s s u r e  grad ien ts  
(a = expe r imen t  1200 [9 ] ;b=expe r imen t4800  [9]). x,  m .  

where  v w is  the ve loc i ty  of suction or  injection at  the su r f ace .  

In the a s s ignment  of a re la t ionship  between the turbulent  v i scos i ty  e and the averaged  c h a r a c t e r i s t i c s  
of the motion we will divide the boundary l aye r  into two regions:  an inner  one and an outer  one. In the 
inner  region,  in the immed ia t e  vicini ty of the wall,  we will a s s u m e ,  in accordance  with [5], that  

~ = e~ = p (0.4g) 2 1-- exp , - -  -~-yl ' (3) 

where  o is  a damping constant;  taking into account  the p r e s s u r e  gradient  and suction (injection) in the bound- 
a r y  l aye r  we put th is  constant  in the  f o r m  [2] 

26v j_p0 
[exp (ll.8v~ + e x p ,  11.8v ~ }--1/2, (4) a =  - -  

where  

pO dp v %~ v~, (x~,t'/2" 
~x or3, v, 

F o r  the outer  region of the boundary l aye r  we use  the a l ternat ion fac to r  and put the turbulent  v i scos i ty  
in the f o r m  [2] 

.. ) 
0 

(5) 

The line of separa t ion  of the turbulent  boundary l a y e r  into inner  and outer  reg ions  is  given by the 
conditi on 

~z (x, y) = % (x, V). 

To  fac i l i t a te  the applicat ion of the numer i ca l  method of solution we use  in equations (1) a L e e s - t y p e  
t r a n s f o r m a t i o n  of the v a r i a b l e s  [6] 

pU e It 
=p~ uodx, n =  . r ~  V, f =  = - d n + f w .  

�9 !1 e 
0 0 

(6) 

In t h e s e  v a r i a b l e s  s y s t e m  (1) i s  written as  (F = ~f/~?):  
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o - - !  Fig.  3. Velocity prof i le  u / u  e in 
boundary l ay e r  fo r  different  values  
of inject ion p a r a m e t e r  Vw/U e .  
Exper imenta l  data of [11] :  1) 

Vw/U e = 0; 2) 0.0039; 3) 0 . 0 0 9 9 3 ;  

4) 0.0147. 
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with boundary conditions 

( OF ] OF OF Of OF ) 
0~ a~ a M , (7) 

~=~o, F(~o, ~) =F~(~o, ~1); ~l=O, f=f~, F = 0 ;  n ~ o o ,  F--~I. (8) 

1 du e H e r e ~ = l + - - ,  [~=2~- -  - -  
�9 ~ u e d~ 

To const ruct  the numer ica l  method of solving problem (7), (8) we rep lace  the region of continuous 
var ia t ion  of the arguments  ~ and ~ by the calculation grid shown in Fig.  1. 

Taking into account the pa r t i cu la r  nature  of the change in quantit ies f and F,  we introduce a var iable  
step of the coordinate  W a c r o s s  the boundary l ay e r  so that [3] the grid steps in the direct ion of this  coord i -  
nate fo rm an increas ing  geomet r ic  p rogress ion  with denominator  k: 

~h+x = ~]~+h~; h~=khi_x, i=O,  1, . . ' ,  lv'--l ,  

the  step h 0 close to the wall has to be ass igned.  

Then,  fo r  any i - th  l aye r  of the grid region 

k ~ - - I  
~l~=ho ~ ,  i=0 ,  1 . . . . .  N; k~-l .  

k- -1  

On any l aye r  ~ = coast  of the grid region we use  the following express ions  for  the approximation of 
the different ia l  ope ra to r s  F'  and (c~F')' contained in (7) by di f ference opera to rs  (the dash means  the de r iva -  
t ive with r e spec t  to  17): 

F~---- F~+x-- Fi-1 , (9) 

(~F')~ = 2 [~+,/~ (r~§ r~) (~ - ~ )  - ~_,/~ (F~ - -  F~_ 0 (~I~+~ - -  ~)] (Z0) 

(q~+1 - -  *h-l) (11i+i-- ~l~) (~l~ - -  'h-D 

The der iva t ives  ~F/8~ and ~f/o~ contained in (7) were  approximated by two different  methods with 
the aim of select ing the be t t e r  method.  Accordingly,  in the construct ion of the dif ference analog of problem 
(7) we considered two different  s tenci ls  (Fig. l a  and b), i . e . ,  groups of grid points adjacent to the fixed 
point at which the values of the grid functions F and f a re  used as  approximations for  the ope ra to r s  of the 
different ial  equation. 

a) F o r  a s ix-point  s tenci l  (Fig. la) we use  a weighted scheme [7]. The dif ference analogs of the 
quantit ies contained in (7) a r e  put in the fo rm  

OCI) O f , j +  1 - -  Oi, J (11) 

where ~ is  any o f t h e  quantit ies ( aF ' ) ' ,  f, F~, B, F2, ~F, ~: r is  any of the grid functions F or  f,  and ~ i s  
a rea l  p a r a m e t e r  called the weight of the scheme.  When ~ = 0 we obtain a four-point  explicit  scheme,  and 
when cr = 1 we have an advance scheme or  a pure ly  implici t  scheme.  
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Using (11), e x p r e s s i o n s  (9) and (10), and exp res s ions  s i m i l a r  to  them,  we can wri te  fo r  the d i f f e ren-  
t ia l  equation (7) the cor responding  d i f ference  equation, which a f t e r  e l e m e n t a r y  a lgebra  can be brought  to the 
f o r m  

aiF~_l,i+, +biF~,j+l-'-QFi+l,j+x =g~, i = l ,  2 ,  , . ,  N - - I .  (12) 

Coefficients  a i, bi, c i ,  and gi a r e  v a r i a b l e s  which depend on the values  of the  requi red  functions f and F .  

b) I f  a f ive-point  s tenci l  i s  used (Fig.  lb) the  de r iva t ives  F '  i ~ +1 and (~F ' ) ' i ,  i +I  a r e  wri t ten in f o r m  
(9) and (10) r e spec t ive ly ,  and the de r iva t ives  with r e s p e c t  to c o o r d ~ a t e  ~ a r e  r ep re sen t ed  with the aid of 
the  lef t -hand th ree -po in t  scheme  as :  

O(I) i,i+l= 3(:I)i'J+l - -  4(I~ -:  (Pi,j-1 (13) 

By ~ h e r e  we mean  any of the  grid functions F or  f .  Relat ion (13) can be used in the whole region,  of course ,  
with the exception of the case  j = 0. In th is  case  the der iva t ive  is  approximated  by a two-point  s c h e m e .  

As a r e su l t  of approx imat ion  of the d i f ferent ia l  o p e r a t o r s  by means  of these  re la t ions  in the case  of 
a f ive-point  s tenci l  the different ia l  equation (7) can be rep laced  by a d i f ference  equation in a f o r m  s i m i l a r  
to (12). 

F o r  any of the s tenci l s  we obtain the  solution of the d i f ference  equation (12) by i t e ra t ion ,  us ing  the 
pivot  method on each l a y e r  ~ = const [7]. 

The boundary value fw on the wall  (if t he re  is no injection,  fw =- 0) will sa t i s fy  the equation 

d~ 2~ uu~ ! 2~ (14) 

which is  eas i ly  in tegra ted  and g ives  

1 j" v~, dR. (15) 
0 

In the case  where  a s ix-point  weighted scheme  i s  used (Fig. l a ) ,  however ,  the d i rec t  appl icat ion of 
(15) can lead to  e r r o r s  in the a s s ignment  of the d i f ference  boundary condition on the wall .  Hence,  for  such 
a pa t t e rn  the o p e r a t o r s  of equation (14) a r e  approximated  by d i f fe rence  o p e r a t o r s  in accordance  with the 
weighted s c h e m e .  As a r e su l t ,  on each new l a y e r  fwj +1 is  found f r o m  the re la t ion  

1 ] V-2- [~+1 "(1- -~)~j ]  w -~ I v,~+~ 

+(12-~)  vwj ] ,  ~o_ 2~ 

uej ] ~j§ 

To solve equation (12) by the n u m e r i c a l  method we complied a p r o g r a m  for  the M-220 compute r .  

The m a s s  of va lues  for  the outer  flow veloci ty ,  compiled f r o m  exper imen ta l  data,  were  f i r s t  smoothed 
by a s tandard p r o c e d u r e  involving a spline function [8]. The applicat ion of th is  p rocedu re  a l so  allowed a 
v e r y  accu ra t e  calculat ion of the de r iva t ives  of the externa l  veloci ty  with r e s p e c t  to  the longitudinal coordinate .  

The calculat ion p rocedu re  begins  at  c r o s s  sect ion x = 0, where  equation (7) degenera tes  trite an ord inary  
di f ferent ia l  equation.  Since a r ea l  developed turbulent  boundary l a y e r  begins  not at point x = 0, but at some 
t rans i t ion  point x = x t, we used the following method of calculat ion:  for  x < x t the boundary l aye r  was 
a s sumed  to  be l a m i n a r  with a = 1; for  x > x t the boundary l aye r  was r ega rded  as  a developed turbulent  
l aye r  and the values  of a we re  de te rmined  f r o m  (3)-(5). As the calculat ion r e su l t s  showed, a change in x t 
f o r  f lows with z e r o  or  negat ive  p r e s s u r e  g rad ien t s  main ly  a f fec ts  the c h a r a c t e r i s t i c s  of the turbulent  
boundary l aye r  in sec t ions  si tuated in the immed ia t e  vicini ty  of the point x = x t .  In flows with pos i t ive  
p r e s s u r e  g rad ien t s  the va r ia t ion  of x t leads  to a pa ra l l e l  shift  of the in tegra l  c h a r a c t e r i s t i c s  of the turbulent  
boundary  l a y e r .  In th is  case ,  as  the calculat ions showed, the  value of x t has  to be  chosen so that  any c h a r a c -  
t e r i s t i c  of the turbulent  boundary l a y e r ,  e . g . ,  cf = cf(x), p a s s e s  through a fixed point in i t s  own plane;  in 
our  example  th is  i s  the point (cf0, x0), which is  de te rmined  f r o m  ~dae r e su l t s  of an appropr i a t e  exper iment  
o r  by some  other  method.  
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It goes without saying that the assignment of a velocity profile at some section x 0 of the turbulent 
boundary layer  entirely obviates the search for the value of x t .  

Using the expounded method we carr ied out systematic calculations of the turbulent boundary layer.  
The obtained resul ts  were compared with the experimental data given in [9]. In addition, we attempted to 
estimate the e r r o r  introduced into the calculations by the hypothesis of local similarity,  which is widely 
used in the theory of a turbulent boundary layer  [10]. For  this purpose for the majority of considered 
cases of flow we integrated the boundary layer  equation (7) also in its local approximation, which is obL 
%ained by discarding the derivatives of the required functions with respect  to coordinate ~ on the right hand 
side of (7). 

For  the majori ty of calculations we put h 0 = 0.005 and k = 1.07 with the number of points across  the 
boundary layer  equal to 100. A significant increase in the number of these points did not lead to any 
appreciable changes in the resul ts .  The weight ~ of the difference scheme was chosen in the range 0 .5-1 .0 .  
The calculations showed that the use of a six-point stencil (scheme a) and a five-point stencil (scheme b) 
led to practically the same resul ts ,  which were in good agreement with the experimental data in the main 
region of flow. 

Figure 2 gives some resul ts  of numerical calculations of a turbulent boundary layer  in an incom- 
pressible  liquid in the absence of injection at the surface. The solid curves are  the results  obtained by 
the described finite-difference method. The points are  the experimental data. 

Figure 2, Ia shows the values of the local friction factor of a flat plate. The dashed line on the same 
figure gives the values of this factor calculated from the formula 

c: = 0. 0263Re~ 1 .~ , (16) 

which is often used for calculation of a flat plate. Figure2,  Ibgives thevalues of cf for the case of a nega- 
tive pressure  gradient, while Fig.  2, Ha, b gives the values for the case of positive pressure  gradients. 
The agreement of the results  of the finite-difference method with the experimental data in these cases can 
be regarded as good. 

The dot-dash lines in Fig. 2, Ib and 2, Ha, b are  the curves of the local friction factor calculated 
by using the above-mentioned hypothesis of local s imilari ty.  It is obvious that the hypothesis gives accept-  
able results  only in the case of flows with negative pressure  gradients. 

Figure 3 gives the results  of calculation of a turbulent boundary layer  on a plate in the presence of 
injection of substance into the boundary layer .  The points represent  the experimental data of [11]. We 
can conclude from a comparison of the obtained curves with the experimental data that the method satis-  
factori ly predicts the distortion of the velocity profile even at fair ly high values of the injection parameter .  

x, y 

11, V 

p, p, ~u, v. 
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a 

v, = (~w/p) I/2 
~0. 995, ~}** 

f, F 

k 

N 
ff 

ai, bi, ci, gi 

N O T A T I O N  

are  the coordinates directed along the normal to surface of body; 
are  the longitudinal and t ransverse  velocity components; 
a re  the pressure ,  density, dynamic viscosity, and kinematic viscosity of liquid; 
is the total tangential friction stress;  
is the local friction factor; 
is the dynamic turbulent viscosity (e i, %, in inner and outer regions of boundary layer ,  
respectively); 
is the damping constant; 
is the dynamic velocity; 
a re  the value of coordinate y used for thickness of boundary layer  for  F = 0. 995 and momen- 
tum loss thickness; 
a re  the Lees variables; 
a re  the new dependent variables; 
i s the grid step; 
is the denominator of step; 
is the number of grid points across  boundary layer; 
is  the weight of difference scheme; 
are  the coefficients of difference equation; 
is a grid function; 
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Re x = UeX/V is the Reynolds number; 
a =1 + e/~; 

= 2~ (1/u e) (dUe/d~); 
pO= --(dp/dx) (v/pv,); 
vOw = Vw/V, .  

Sub script__ss 

e is the outer boundary of boundary layer; 
w is the body surface; 
t is  the point of transition of laminar boundary layer to turbulent one. 
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